La inteligencia artificial consigue dominar Stratego, el juego de información imperfecta
El programa de inteligencia artificial DeepNash, desarrollado por la empresa británica DeepMind, ha aprendido a jugar al Stratego a nivel experto. Se trata de uno de los pocos juegos de mesa que la inteligencia artificial (IA) todavía no había dominado, debido a la gran incertidumbre que lo caracteriza. El logro alcanzado por la empresa británica, comprada por Google en 2014, se publica en el número de esta semana de la revista Science.
A diferencia de otros juegos ya controlados por la inteligencia artificial, como el ajedrez o el Go, en los que los jugadores pueden ver todas las piezas del juego y crear de este modo estrategias, los jugadores de Stratego tienen que aprender a manejar la falta de certeza. Es un juego mucho más parecido al póker, en el que cada jugador conoce sus propias cartas, pero no las del oponente.
Para jugar bien a Stratego con IA es necesario encontrar un algoritmo que tenga en cuenta las dudas del jugador. La gran cantidad de resultados posibles tiene como consecuencia que los algoritmos que funcionan bien en juegos de información perfecta, e incluso aquellos que funcionan bien para el póker, no se puedan aplicar a este juego. La complejidad es de muchos órdenes de magnitud mayor: 10^66 en Stratego comparado con 10^6 en Texas Hold’em para dos jugadores.
“En Stratego, la planificación es casi imposible, dada la cantidad de incertidumbre sobre la que los jugadores tienen que razonar. En este trabajo, tomamos otro camino y aprendimos directamente una estrategia para cada situación dada del tablero, usando una combinación de teoría de juegos y aprendizaje de refuerzo profundo”, explica a SINC Julien Perolat, coautor principal del estudio e investigador de DeepMind.
Para desarrollar DeepNash, el programa detrás del logro, Perolat y sus colegas combinaron el algoritmo R-NaD, de aprendizaje por refuerzo, con una arquitectura de red neuronal profunda para lograr una estrategia de juego competitiva.